
Hierarchical and Modular Network on
Non-prehensile Manipulation in General

Environments
Yoonyoung Cho∗, Junhyek Han∗, Jisu Han, Beomjoon Kim

Korea Advanced Institute of Science Technology
https://unicorn-hamnet.github.io/

(b) Drawer

(g) Circular bin (h) Table

(c) Basket

(e) Sink

(a) Cabinet (d) Suitcase

(f) Grill (i) Top of shelf

Fig. 1: Illustration of our real-world domains. Our approach generalizes to diverse and unseen objects and environments. The
object outlined in red represents the goal pose. Note how the environment geometry limits object and robot motions: in (a), the
robot must reach and maneuver the object while avoiding the ceiling; in (b) and (c), the robot must circumvent walls to access
the object; in (d), the robot must move the object over a barrier; in (e), the robot must first traverse the sink to contact under
the crab, lift it across the sink wall, then reorient the crab to face forward; and in (i), the robot must consider its kinematics
while manipulating the object on a high shelf. Each object and its pose are chosen so that it cannot be simply pick-and-placed.

Abstract—For robots to operate in general environments like
households, they must be able to perform non-prehensile ma-
nipulation actions such as toppling and rolling to manipulate
ungraspable objects. However, prior works on non-prehensile
manipulation cannot yet generalize across environments with
diverse geometries. The main challenge lies in adapting to varying
environmental constraints: within a cabinet, the robot must
avoid walls and ceilings; to lift objects to the top of a step,
the robot must account for the step’s pose and extent. While
deep reinforcement learning (RL) has demonstrated impressive
success in non-prehensile manipulation, accounting for such
variability presents a challenge for the generalist policy, as
it must learn diverse strategies for each new combination of
constraints. To address this, we propose a modular architecture
that uses different combinations of reusable modules based
on task requirements. To capture the geometric variability in
environments, we extend the contact-based object representation
from CORN [14] to environment geometries, and propose a
procedural algorithm for generating diverse environments to
train our agent. Taken together, the resulting policy can zero-
shot transfer to novel real-world environments despite training
entirely within a simulator. We additionally release a simulation-
based benchmark featuring nine digital twins of real-world
scenes with 353 objects to facilitate non-prehensile manipulation
research in realistic domains.

I. INTRODUCTION

Despite recent advances in robot manipulation, the practical
deployment of robots in everyday environments like house-
holds remains challenging. One key reason is the robot’s
inability to manipulate ungraspable objects. While much of
prior work on manipulation centers around prehensile ma-
nipulation [48, 90, 23, 87], such approaches fall short in
unstructured environments where objects are often ungraspable
due to their geometry and the surrounding scene. To overcome
this, robots must embrace non-prehensile manipulation, such
as pushing, toppling, and rolling [38, 44, 14].

Recently, reinforcement learning (RL)-based approaches
have achieved several successes in non-prehensile manipu-
lation [39, 103, 14, 92]. However, these works have been
limited to fixed objects in fixed scenes [39], general objects
on flat tabletops [103, 14], or minor variations in objects and
environments [92]. As such, no prior work addresses non-
prehensile manipulation for novel objects and environments
with arbitrary geometries as in Figure 1. Based on this

*Equal Contributions.

https://unicorn-hamnet.github.io/


Fig. 2: Illustration of computational structure for biological
motor control (left) and our architecture (right). Each row
compares analogous components in (1) acquiring sensory
observations, (2) determining module activations, (3) modules
representing groups of co-activated neurons, and (4) compos-
ing the modules to construct specific behaviors. The bar graphs
denote the activation weight of each module.

observation, our objective is to extend RL to enable non-
prehensile manipulation in such diverse setups.

The key challenge here lies in training a policy capable
of quickly adapting to the constraints imposed by the current
scene. For instance, consider the scenarios in Figure 1: each
domain not only presents the robot with a unique set of
constraints, but these constraints also evolve throughout an
episode (Figure 1e). This requires a high-frequency policy
function that can model rapid changes in actions, even in
response to minor changes in the state or goal. For example,
in the scenario depicted in Figure 1e, as soon as the toy crab
is positioned above the sink, the robot must quickly switch
from a lifting skill to a translation skill. Unfortunately, neural
networks struggle to learn such high-frequency functions, even
in supervised learning setups [83, 3, 73], a phenomenon known
as spectral bias.

Human brains, on the other hand, are extremely adaptive,
and their computational structure for actions differs signifi-
cantly from that of standard artificial neural networks. The
computation of our brain is organized modularly [15], where a
motor cortex orchestrates neural activities at the level of motor
modules, a group of co-activating motor neurons1 [86, 61], to
produce an action based on the current task [62, 85, 37]. By
invoking different sets of modules in response to the current
context, the motor system produces disjoint behaviors such
as reaching or grasping without interference [22]. This is
illustrated in Figure 2, left.

Inspired by this, we propose a modular and hierarchical
policy architecture (Figure 2, right). In our architecture, the
modulation network assumes the role of the motor cortex
which determines the activations of modules, each representing

1Neurons connected to muscle fibers that trigger muscular contractions.

Reorient-Ceil5

Lift-Left1

Translate-Ceil7

Drop2

Reach-NoCeil6

Reorient-NoCeil3

Reach-Ceil8

Translate-NoCeil4

Lift-Ceil9

Fig. 3: Illustration of how distinct scenes map to distinct
module activations that yield distinct behaviors, for a 5-layer
network with 4 modules. The top-right colormap shows the
activation of a particular module (column) for a particular layer
(row): e.g., column 2, row 1 shows the activation of module 2
for layer 1. Opacity indicates the strength of module activation.
The red object denotes the current object pose, and the blue
object indicates the goal object pose. Ceil and NoCeil indicate
the existence of a ceiling.

1 2 4 8
Number of modules

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

HAMNET
MLP
TRANSFORMER

0.36 0.43 0.94 1.76
Number of parameters (M)

12.1

Fig. 4: Success rates per architecture by parameter counts for
a monolithic architecture (MLP and transformer) (x-axis, top)
and number of modules for HAMNET (x-axis, bottom)

a group of co-activated network parameters. The weighted
combinations of these modules are then used to define the
parameters of a base network, which has a fixed architecture
but the parameters are determined online by the modulation
network based on the current context, such as the environ-
mental constraints. Unlike standard neural networks, this com-
putational structure enables a single base network to model
multiple functions, allowing the policy to produce distinct
behaviors in response to even subtle changes in context.

We refer to our modular policy architecture as Hierarchical
and Modular Network (HAMNET). We discovered that, when
we train the policy with HAMNET, it autonomously discovers
modules and their activations that correspond to distinct ma-
nipulation strategies, such as reaching, lifting, or reorienting



objects (Figure 3). Furthermore, as shown in Figure 4, we
found that HAMNET scales much more gracefully with the
number of parameters compared to a standard neural network
in our simulated domains.

Another challenge in generalizing across diverse environ-
ments and objects is acquiring geometric representations from
high-dimensional point cloud observations. One option is
to use end-to-end training, yet jointly learning to encode
point clouds incurs significant memory footprint, limiting its
use with large-scale GPU-based simulators [49], which have
become an essential tool for training RL policies for robotics.
Pre-training representation models can mitigate this issue,
but their effectiveness depends on the pretext task capturing
features relevant to manipulation. Consequently, large off-the-
shelf models are often unsuitable, not only from their high
computational cost but also due to spurious geometric features
that are irrelevant for contact-rich manipulation [100, 14].

Instead, we build on CORN [14], which learns object repre-
sentations tailored for manipulation based on a pretext task that
predicts the presence and location of contact between a gripper
and object. The key insight is for contact-rich manipulation,
it is important to capture what forces and torques can be
applied to an object in the given state, which in turn depends
on the presence and location of the contact between the
object and the gripper. While CORN restricts itself to gripper-
object contacts, we also need object-environment contacts in
our problems as we generalize over environments. So, we
introduce Universal CORN (UNICORN) that generalizes to
contact affordances between two arbitrary geometries, based
on a Siamese pre-training pipeline where a single encoder
learns the representations for both an object and environment,
and a decoder predicts the contacts between each environment
point cloud patch and the object.

Our last contribution concerns domain design. To obtain a
policy that generalizes to diverse environments, training en-
vironments must encompass a range of geometric constraints,
while affording fast simulation for practical training. This is
a non-trivial problem: unlike objects, environment assets for
simulated RL training are not widely available, and manually
designing them is costly. Therefore, we propose a procedural
generation algorithm for constructing environments based on
cuboid primitives. Online rearrangement of cuboids at different
poses and dimensions yields wide coverage of geometric
features that exist in the real world, such as walls, ceilings,
slopes, and bumps. Further, the convex geometry of cuboids
affords efficient dynamics simulation. Figure 3 shows example
environments from our environment generation algorithm.

We show that by leveraging our framework, we can train a
non-prehensile manipulation policy that can operate in diverse
and novel environments and objects in a data- and time-
efficient manner. We train our policy entirely in simulation
and zero-shot transfer to unseen environments and objects
in the real world. Furthermore, we provide a simulation-
based benchmark comprising 9 digital twins of real-world
environments and 353 objects to serve as a benchmark for non-
prehensile manipulation for general environments and objects.

TABLE I: Comparison of generalization capabilities for non-
prehensile manipulation.

Object generalization General action space Environment generalization
HACMAN [103] O X X
CORN [14] O O X
Wu et al. [92] △ △ △
Ours O O O

II. RELATED WORK

A. Nonprehensile Manipulation

1) Planning-based approaches: Prior works on planning-
based non-prehensile manipulation use gradient-based opti-
mization [56, 70, 57], graph-based search [47, 46, 55, 12, 41,
11], or a hybrid of both [7, 64]. To address the discontinuous
dynamics arising from contact mode transitions, optimization-
based works employ soft contact variables [56] or complemen-
tarity constraints [70, 57]. However, due to the imprecision
of smoothed contact and the difficulty of precise constraint
satisfaction, the resulting motions are difficult to realize in the
real world.

On the other hand, graph-based methods [11, 34] can handle
discrete dynamics transitions by representing the problem
with a graph, where nodes represent robot states and contact
modes, and edges encode the motion during the transition.
This enables these methods to output more physically realistic
motions for real-world deployment [12, 41]. However, to
make the search tractable, these works restrict the diversity
of motions, assuming quasi-static motions [11, 34] or prede-
fined primitives [105, 41], limiting them to tasks with simple
motions and sparse contact-mode transitions.

Other works combine optimization and sampling to acceler-
ate planning [7, 64], yet remain too slow for online use due to
the cost of searching large hybrid spaces with discontinuous
dynamics. Further, most planning methods require knowledge
of system parameters like mass and friction, which are difficult
to estimate in real-world scenarios with varying objects and
environments, harming practical real-world deployment.

2) Learning-based approaches: Recent works leverage re-
inforcement learning (RL) to bypass the limitations of tradi-
tional planners by learning a policy that maps actions directly
from sensory inputs [43, 98, 67, 99, 26, 102, 39, 103, 14, 92].
While this circumvents the computational cost of planning or
the requirement of full system parameters, most of these works
suffer from limited generalization across object geometries,
since the policy is only trained on a single object [43, 98,
67, 99, 26, 102, 39]. Recent works incorporate point-cloud
inputs [103, 14] or employ contact retargeting [92] to facilitate
generalization across diverse object shapes, but none of these
approaches adequately addresses the problem of generalizing
across diverse environments using the full action space of the
robot, as summarized in Table I.

To generalize across diverse objects, HACMan [103] pre-
dicts an object-centric affordance map on its point cloud.
While sample-efficient, this restricts robot motion to a hand-
designed poking primitive, limiting their applicability in di-
verse environments. CORN [14] learns a policy over the full
joint space of the robot, and generalizes over objects with a



contact-based object representation tailored for manipulation.
However, this work remains limited to a fixed tabletop due
to the lack of environment representation. Wu et al. [92]
retargets contacts from human demonstrations to determine
robot actions for novel scenes, but their approach is limited to
scenes similar to the original demonstration, as the actions are
restricted to predefined skill sequences based on a primitive
library. Like CORN, we train an RL policy over the full
robot joint space to manipulate objects of general geometry.
However, our approach generalizes across environments by
leveraging our extended contact-based representation, UNI-
CORN, and a modular network architecture, HAMNET.

B. Multi-task Neural Architectures

In multi-task learning, a single model learns to do a family
of related tasks by leveraging task synergies for improved
performance and training efficiency [6]. As a single model
must distinguish multiple tasks, it additionally takes context
variables (e.g., task IDs) as conditioning inputs. The simplest
approach for multi-task learning uses a monolithic architecture,
which incorporates context inputs simply by concatenating
them with network inputs. However, this design suffers from
interference among tasks, as the neurons must handle multiple
functions, leading to performance degradation [96, 36].

Recently, context-adaptive architectures have been pro-
posed, where a separate network gϕ determines the parameters
of base network fθ from context inputs. See, for example,
Figure 5 (a) and (c) for a comparison of monolithic and
context-adaptive architectures. This separation allows the neu-
ral network to define a different function for each context,
which mitigates interference [36]. Our architecture, HAMNET,
also falls into this category.

Representative context-adaptive architectures include condi-
tional normalization [68, 66, 54, 5], hypernetworks [31, 36],
and modular architectures [29, 94, 81]. In conditional normal-
ization [68] (Figure 5b), gϕ takes the context variable z as
input and applies feature-wise scale and bias {γ, β} = gϕ(z)
to the intermediate features of the base network as y =
γ⊙fθ(x)+β where ⊙ denotes the element-wise multiplication.
While effective, the expressivity of these architectures is
limited to affine transforms, restricting its capacity [74]. In
hypernetworks [31] (Figure 5c), gϕ affords broader expressiv-
ity, as it generates the entire set of base network parameters,
θ = gϕ(z), but suffer from poor training stability due to its
large decision space over densely interacting parameters [60].

HAMNET is an instance of modular architectures (Fig-
ure 5d), where gϕ only predicts sparse activation weights w of
modules to determine θ. Specifically, in modular architectures,
M denotes the number of modules, each of which is a
network parameter, and the parameters of the base network
are effectively formed as a weighted combination of these
modules, such as θ =

∑M
i=1 wiθi.

However, prior works on modular architectures for control
assume that z is given by the user and is discrete, such as pre-
defined task IDs [69, 81, 94, 33]. In contrast, to generalize
to novel, real-world environments in our problem, we need

xL

xL xL

(a) Monolithic architecture

(c) Hypernetwork

Context input

State input

Base Network

Base NetworkBase Network

(b) Conditional Normalization

Output

Scale

Module

Activation

Modules

Bias

Output

Context input

State input

(d) Modular architecture

Context input

State input

Context input

State input Output

xL

Output

Base Network

Fig. 5: Conceptual illustration of how different architectures
incorporate context inputs.

⊕
and

⊙
denote elementwise sum

and multiplication, and L denotes number of layers. The base
network that computes the output is indicated by fθ, while gϕ
is a separate network that determines θ from the context. In
our work, we adopt a variant of the modular architecture (d).

to infer z from sensory observations such as environment
and object point clouds, and a goal. To overcome this, we
design geometric encoders that map high-dimensional sensory
observations to z.

Our architecture is most similar to Soft Modularization
(SM) [94], with three key differences. Unlike SM, which
predicts connectivities between all pairs of modules between
neighboring layers, we directly predict module activations,
which simplifies computation and reduces the output dimen-
sions from M2 connections to M module activations. We ad-
ditionally improve the computational efficiency by predicting
all module activation weights in parallel, instead of predicting
in series, conditioning on the preceding layer’s module acti-
vations. Lastly, we incorporate a gating mechanism [31] to
enhance expressivity and boost policy performance.

C. Representation learning on point clouds

To accelerate RL training with high-dimensional sensory
inputs, prior works use representational pre-training [95]
to bootstrap RL agents. Different pretext tasks have been
proposed for this purpose, such as point completion [88],
orientation and category estimation [9, 35], or contrastive
learning [93]. Inspired by the advances in natural language
processing [19, 72] and image analysis [32], recent works
adopt self-supervised learning (SSL) on patch-based trans-
formers [97, 8, 65, 101, 1] for point cloud representation learn-
ing. These works reconstruct unseen geometric patches via
either autoregressive prediction [8] or masking [97, 65, 101, 1]
to learn rich geometric representations, achieving state-of-the-
art results in shape classification and segmentation [8].

Despite their success in general-purpose vision tasks, these
representations are unsuitable for robot manipulation for two
reasons. First, these models attempt to predict the missing
patches in a point cloud, which forces the encoder to focus
on encoding information about the object’s shape. However,
knowing the exact shape of the object is often sufficient but
unnecessary for manipulation. For example, manipulating a
toy crab in Figure 1e does not require knowledge of the



Modulation Network

MLP

Module 
Activation 

header

(Linear)

Feature-wise 
activation factor

Modulation 
Embedding

Module-wise 
activation factor

Softmax

Gain 
header 
(Linear)

: Pre-trained

  blocks (Frozen)

: Trained blocks
Geometry Encoder

Global scene cloud

z1

zN-1Patch

Trans-

former

z1

zN

zN-1

zN-1

Patch

Trans-

former

Base Network

Action 

Value

Actor

Critic

concat

concat

Cross 
Attention

Cross 
Attention

Cross 
Attention

1

1

3

3

2

Object State

Phys. Params

Joint State

Prev Action

Hand State

Goal pose

1

2

3

Non-geometric state Inputs

zτ

zNzO

Patch

Trans-

former

zN

z1zG

[EMB] token

[EMB] token

[EMB] token

Local scene cloud

	Current object point cloud

zG

zG

zL

zL

zL

zO

zO

Fig. 6: Overall architecture. Our model comprises three components – the geometry encoder (red), the modulation network
(green), and the base network (blue). The geometry encoder embeds the point clouds, and the modulation network maps the
embeddings and non-geometric state inputs to the base network’s parameters θ. Conditioned on θ, the base network maps the
state inputs and object geometry to actions and values. Input groups tagged with different numbers ( 1⃝, 2⃝ and 3⃝) indicate
sets of non-geometric state inputs fed into different network parts. The inputs to cross-attention layers are concatenated and
tokenized by a two-layer multi-layer perceptron (MLP).

exact shape between its legs, as that area is tightly confined
and cannot be contacted by the robot or the environment.
Second, capturing such spurious details requires a large model,
which degrades training efficiency [24, 78] and policy perfor-
mance [100]. In contrast, we extend CORN [14] to pre-train a
representation to encode contact affordances among arbitrary
geometry pairs, shown to be effective for robot manipulation.

D. Modularity in biological networks

Modularity in biological neural networks is a key principle
underlying adaptation and learning [80]. In vertebrate motor
systems, muscle synergies [86, 17, 61, 51, 20] serve as mod-
ules of movement that abstract muscle control, representing
a coordinated contraction of a set of muscles to produce a
desired behavior, such as the synchronized activation of the
quadriceps and hamstrings for walking [20].

Modularizing motor control in this way provides several
benefits. When adapting to a particular context, the central
nervous system (CNS) can dictate behaviors using sparse, low-
dimensional signals that activate specific muscle groups [4].
Compared to controlling individual motor neurons, this affords
rapid switching between distinct motor skills like reaching
and grasping depending on the context [62, 85]. Further,
synergies can be reused across behaviors, producing diverse
movements such as pinch- or power-grasps from a limited set
of modules [71], which facilitates learning by recombining
and adapting existing modules [15, 22]. In our work, we
incorporate these principles to design our architecture.

III. METHODOLOGY

We consider the non-prehensile manipulation problem,
where a robot arm with a fixed base moves an object to a
target pose in environments of general geometry, e.g., kitchen
sinks, cabinets, and drawers (Figure 1). We model this problem
as a Markov Decision Process (MDP), represented as a tuple

Procedural 

Domain Generation


(Section III.D)

UniCORN

Representation 

Pre-training

(Section III.C)

Modular Policy 
Training via RL


(Section III.B)

Simulation-to-
Real Transfer


(Appendix C)

Geometry 
Encoder

Simulator

Object

Geometry 

Dataset

Real world

Fig. 7: Overall method overview. Our framework consists
of four main components: a modular policy trained with
RL, contact-based representation pre-training, a procedural
domain generation scheme for environment geometries, and a
simulation-to-real transfer method for real-world deployment.
Dashed blocks indicate external inputs.

(S,A, P, r, γ) denoting state space S, action space A, state
transition model P (st+1|at, st), reward model r(st, at, st+1),
and discount factor γ. Our objective is to obtain policy π that
maximizes the return Rt = Eat∼π(·|st)[

∑
γtr(st, at, st+1)]

via a sequence of non-prehensile actions. Details on our MDP
design are in the Appendix D.

Figure 7 presents an overview of our framework. We lever-
age deep RL in a parallel GPU-based simulation [49] to train
a modular policy (Section III-A) using the pre-trained point
cloud representation (Section III-B) on procedurally generated
domains (Section III-C). We distill the resulting policy for
real-world deployment via teacher-student distillation (Ap-
pendix C). All pre-training, policy training, and distillation
stages happen entirely in a simulation.

A. HAMNET-based architecture

Our architecture, shown in Figure 6, consists of three main
components: the geometry encoder (red), modulation network



(green), and base network (blue). Our proposed modular
architecture, HAMNET, consists of the modulation and base
networks. Since we use PPO, an actor-critic algorithm, our
base network outputs both value and action.

The geometry encoder processes three types of point cloud
inputs: the global scene cloud, capturing the overall geometry
of the scene; the local scene cloud, detailing the nearby
scene that surrounds the object; and the object point cloud,
representing its surface geometry. Each cloud is patchfied,
tokenized, and embedded by the pre-trained geometry encoder
(Section III-B), yielding latent geometric embeddings z

(G)
1:N ,

z
(L)
1:N , z(O)

1:N , for global, local, and object embeddings, respec-
tively. Details on point cloud acquisition are in Appendix E.

The role of the modulation network (Fig. 6, green) is to
output the parameters of the base network, θ. It takes the ge-
ometry embeddings z

(G)
1:N , z

(L)
1:N , z

(O)
N and non-geometric states

( 1⃝ and 3⃝) as input. To extract scene geometry information
relevant to the policy’s current state, we apply cross-attention
on the scene geometry embeddings z

(G)
1:N and z

(L)
1:N , using the

current robot and object states 1⃝ as queries. The resulting
vector is concatenated with object geometry embedding zON
and full non-geometric state inputs 3⃝, and passed through
an MLP to predict zτ , the modulation embedding. Finally,
the module activation and gain headers map zτ to module
activation weights w and gating values g respectively, for the
L base network layers.

We then use w and g to build the base network parameters θ.
For each layer j ∈ [1 . . . L], w = {wi,j}Lj=1 ∈ RL×M act as M
module-wise weighting coefficients, passed through softmax
to ensure

∑M
i=1 wi,j = 1. The gating factor g = {gj}Lj=1 ∈

RL×Dj is a feature-wise multiplier for each layer, with Dj de-
noting the number of output dimensions of layer j. Together, θ
is constructed as a weighted composition of modules followed
by gating, such that θ = {(

∑M
i=1 wi,jθi,j)⊙ gj}Lj=1.

The base network (Figure 6, blue) comprises actor and
critic networks, where each network is an MLP. To produce
the input for the base network, we first process the object
embedding z

(O)
1:N via cross-attention against input group 2⃝,

then concatenate the result with input group 3⃝. The actor
network outputs the action, and the critic network outputs the
state values, but instead of a single scalar value, it uses three
heads to predict the value for each reward component in our
domain: rs, rr, and rc. Since summing the rewards conflates
the contributions from different reward terms, splitting the
critic into multiple headers helps decrease the difficulty of
value estimation [25, 45]. When training the actor network,
we sum the advantages across reward terms to compute the
policy gradients.

Note that since the base network has both the actor and
critic, we keep separate sets of modules for each of them,
denoted {θ(a)i,j }Mi=1, and {θ(v)i,j }Mi=1 for layer j. Our module
activation weights and gating factor also consist of weights for
a value and action, w = {w(v), w(a)} and g = {g(v), g(a)}.
To make a prediction, the base network gets instantiated twice
for actor and critic; in the former case, the network uses the

Patch

Trans-
former

CMLP

CMLP

Patch

Trans-
former

Patchify Tokenize

Shared weights

Point cloud B

Point cloud A

1

0

FPS
kNN

Normalize

 Point patches

Patch centers
Positional 

embedding
Patch 

tokens

MLP

Add

[EMB]

[EMB]

Geometry Encoder

Contact 
Decoder

zNzB

zNzA

zN-1zB

z1zB

zN-1zA

z1zA

z1:N-1

Local Patch 
Embeddings (zA      )

Global 
Embedding (zB)zN

Fig. 8: Our pre-training architecture consists of a geometry
encoder (red) and a contact decoder (green). The same ge-
ometry encoder operates on each point cloud A and B in a
Siamese fashion to produce local patch embeddings zA1:N−1,
zB1:N−1 and global embeddings zAN , zBN . The contact decoder
(green) predicts contact between each patch zAi ∈ zA1:N−1 and
zBN . The bottom block details the procedure to patchify and
tokenize point clouds.

weight θ(a)j =
∑M

i=1 w
(a)
i,j θi,j ⊙ g

(a)
j }Lj=1, and in the latter, the

network uses θ
(v)
j =

∑M
i=1 w

(v)
i,j θi,j ⊙ g

(v)
j }Lj=1. These details

are omitted in the figure for brevity.

B. Training UNICORN

We design our representation pre-training task on estimating
the presence and location of contact between two point clouds,
A and B.

1) Pre-training data generation : To acquire data for pre-
training, we generate a dataset containing pairs of objects
represented as point clouds, and contact labels indicating the
presence and location of contact. Using the objects from
DexGraspNet dataset [89], we generate the data by (1) sam-
pling near-contact object configurations, (2) creating the point
clouds by sampling points from the surface of each object,
and (3) labeling contact points based on whether they fall
within the other object. To account for possible scale variations
between geometries, we sample the point clouds at varying
densities and scales during this process. For details on the
data generation pipeline, see Appendix A.

2) Network Architecture : Figure 8 shows our pretraining
network architecture, comprising the geometry encoder and
the contact decoder. The encoder takes the point clouds of
objects A and B, denoted xA, xB as inputs, mapping the
patch-wise tokens from xA and xB and a learnable [EMB]
token to local patch embeddings zA1:N−1, zB1:N−1 and global
embeddings zAN ,zBN . Afterward, the decoder takes (zAi , z

B
N )Ni=1

and predicts the presence of contact at each of i-th local patch
of object A with object B. The overall network is trained
via binary cross-entropy against the patch-wise contact labels.
During training, we alternate the roles of A and B (i.e., A-B



Ceiling

Lateral Base Plates

Longitudinal Base 
Plates

V
ertical axis Lateral axis

Longitu
din

al 
axis

Walls

Planar 
Plates Interim Plate

: Interior

: Exterior

Fig. 9: Our pipeline for environment generation composes dif-
ferent environmental factors, such as walls, ceilings, and plates
at different elevations for each axis, to construct geometrically
diverse environments.

and B-A) to ensure that we also use the global embedding of
A and predict the contact at a patch of B.

Figure 8 (bottom) shows the procedure to tokenize the
point clouds. In line with previous patch-based transformer
architectures for point clouds [65, 8, 14], we first patchify
the point cloud by gathering neighboring points from repre-
sentative center points. These center points are selected via
farthest-point sampling (FPS), and the points comprising the
patches are determined as the k-nearest neighbors (kNN) of
the patch center. These patches are normalized by subtracting
their center coordinates, and a small MLP-based tokenizer [14]
embeds the shape of each patch. Afterward, we add sinusoidal
positional embeddings of the patch centers to the patch tokens
to restore the global position information of each patch.

C. Procedural domain and curriculum generation

To create diverse environments and support curriculum
learning for training our policy, we develop a procedural gen-
eration scheme for constructing environments as a composition
of cuboidal primitives. Since we construct environments by dy-
namically rearranging existing geometric entities, it integrates
well with most GPU-based simulators [49, 28] that prohibit
spawning new assets after initialization.

Our procedural pipeline, shown in Figure 9, comprises two
main components: domain interior and exterior generation.
The interior includes planar and interim plates arranged
laterally and longitudinally, where planar plates form ele-
vated surfaces and interim plates form sloped ramps. Their
dimensions, elevations, and angles are randomly sampled to
produce diverse topographies, yielding features like bumps,
valleys, and steps (Figure 3). The exterior consists of walls
and ceilings that impose accessibility constraints, where their
presence, height, and ceiling type (nominal or tight) are
randomly sampled. The proportion of ceiling types controls the
difficulty of workspace accessibility, since the nominal ceiling
is generated with sufficient clearance, whereas tight ceilings
leave a narrow margin relative to the object’s height. Details
on the procedural generation pipeline are in Appendix B.

TABLE II: Comparison between baselines regarding architec-
ture and representation.

Model Name Model Architecture Representation
UNICORN-HAMNET (OURS) HAMNET UNICORN
UNICORN-HYPER Hypernetwork UNICORN
UNICORN-SM Soft-Modularization [94] UNICORN
UNICORN-TRANSFORMER Transformer UNICORN
UNICORN-MONO MLP UNICORN
POINTGPT-HAMNET HAMNET PointGPT [8]

As our procedural generation pipeline is fully parameter-
ized, the sampling distributions of environmental parameters
can be dynamically adjusted during training. This enables
curriculum learning, where task complexity is incrementally
increased throughout training. Specifically, we employ a cur-
riculum for robot initialization and ceiling types. To facilitate
this, we additionally introduce two types of robot initializa-
tions: near and random. In the near configuration, the end-
effector begins within a 0.1m radius of the object based on
collision-free inverse kinematics solutions from CuRobo [82];
in the random configuration, a collision-free joint configu-
ration is uniformly sampled within the robot’s joint limits.
Early in training, we preferentially sample near initializations
and nominal ceilings to encourage interaction with the object.
As training progresses, we linearly increase the proportion
of random initializations and tight ceilings, encouraging the
policy to develop obstacle-aware maneuvers for approaching
objects from arbitrary configurations.

IV. EXPERIMENTAL RESULTS

A. Overview

Our goal is to evaluate the following claims: (1) our modular
architecture, HAMNET, affords data-efficient training for a
policy that generalizes over large domain diversity, compared
to monolithic or hypernetwork architectures; (2) our contact-
based representation, UNICORN, affords data-efficient train-
ing for a robot manipulation policy in geometrically rich
domains compared to an off-the-shelf self-supervised repre-
sentation; (3) our framework affords real-world transfer and
generalization to novel environment geometries despite only
training in a simulator with synthetic environments.

To evaluate our claims, we compare the performance of our
proposed model (UNICORN-HAMNET) with the baselines
summarized in Table II. These baselines explore alternative
choices in network architecture or representation. UNICORN-
HYPER uses a hypernetwork [42, 76] to predict base network
parameters. UNICORN-SM is a variant of a modular architec-
ture using Soft Modularization [94]. We include two variants
of standard monolithic architectures, UNICORN-MONO and
UNICORN-TRANSFORMER, respectively using an MLP and
a transformer. Lastly, POINTGPT-HAMNET replaces UNI-
CORN with the PointGPT encoder [8] based on the pre-
trained weights released by the authors. All architectures are
configured to have a similar number of trainable parameters
up to the architectural constraints. Additional details on the
baselines are in Appendix F.



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
# Interactions 1e9

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s r
at

e
UNICORN-HAMNET (OURS)
UNICORN-SM
POINTGPT-HAMNET
UNICORN-HYPER
UNICORN-MONO
UNICORN-TRANSFORMER

Fig. 10: Training progression. For each baseline, we show the
mean (solid) and standard deviation (transparent) of success
rates across three seeds. The interaction steps are aggregated
across 1024 parallel environments.

B. Simulation experiment

To train our policy, we use a Franka Research 3 (FR3)
arm manipulating a subset of 323 objects from DexGraspNet
dataset [89] on the procedurally generated environments as
in Section III-C. We train each baseline using PPO [77]
with identical hyper-parameters, spanning 2 billion environ-
ment interactions across 1024 parallel environments in Isaac
Gym [49]. Detailed hyperparameters for policy training are
described in Appendix F. We consider two metrics: data
efficiency and time efficiency.

To support our claim on training efficiency, we consider the
training progression plot in Figure 10. Overall, modular archi-
tectures (UNICORN-HAMNET and UNICORN-SM) achieve
the best data efficiency, with the mean success rates of 75.6%
and 70.9% after training. In contrast, monolithic architectures
show lower performance, regardless of whether conditioning
is given by concatenation (UNICORN-MONO, 49.8%) or self-
attention (UNICORN-TRANSFORMER, 43.9%). UNICORN-
HYPER performs best among non-modular architectures at
56.5%, indicating the adaptivity of the network expedites
policy training. UNICORN-SM (70.9%) further improves
over hypernetworks, as its modularity affords reuse of net-
work modules and reduces the learning complexity by pre-
dicting sparse module activations rather than parameters of
individual neurons. Lastly, UNICORN-HAMNET (75.6%)
outperforms UNICORN-SM from the increased expressivity
of the gating mechanism. To evaluate the representational effi-
cacy of UNICORN, we also compare UNICORN-HAMNET
to POINTGPT-HAMNET, which underperforms UNICORN-
HAMNET (66.0% vs. 75.6%) due to the overhead from spu-
rious geometric details and increased embedding dimensions.

Since all our training happens in simulation, training time
is also an important factor. To evaluate the time-efficiency of
each baseline, we measure the per-epoch training time in Fig-
ure 11. While the monolithic MLP architecture (UNICORN-
MONO) is the fastest (1.12s) due to its simplicity, modular
architectures (UNICORN-HAMNET and UNICORN-SM)
follow closely at just 1.33s and 1.84s, which shows that

UNICORN-
HAMNET (OURS)

UNICORN-
SM

POINTGPT-
HAMNET

UNICORN-
HYPER

UNICORN-
MONO

UNICORN-
TRANSFORMER

0

1

2

3

4

5

M
ea

n 
t /

 e
po

ch
 (s

)

Fig. 11: Per-epoch training time comparison across all base-
lines, measured on identical hardware (NVIDIA A6000). Error
bars represent two standard deviations.

 - Camera

 - Environment

 - Robot

 - Object

(a) Example of our scene layout
in the cabinet domain.

(b) Our real-world objects, all un-
seen during policy training.

Fig. 12: Our real-world experimental setup.

determining module-level activation adds minimal overhead;
between the two, UNICORN-HAMNET achieves faster train-
ing than UNICORN-SM from the streamlined prediction of
module activations. In contrast, UNICORN-HYPER takes the
longest (5.31s) due to the cost of predicting the full set of base
network parameters. To contextualize the overhead, a standard
transformer (UNICORN-TRANSFORMER) takes around 3.30s.
We also compare with POINTGPT-HAMNET, where the large
encoder significantly lags training, averaging 4.40 s per epoch,
about 3.3 times slower than UNICORN-HAMNET.

C. Real world experiment

TABLE III: Results on 9 unseen real-world domains.
Domain Object Success rate Domain Object Success rate

Cabinet Bulldozer 4/5 Top of cabinet Bulldozer 3/5
Heart-Box 3/5 Crab 4/5

Sink Bulldozer 5/5 Basket Bulldozer 3/5
Angled Cup 4/5 Heart-Box 5/5

Drawer Bulldozer 4/5 Grill Bulldozer 5/5
Pencil case 3/5 Dino 4/5

Circular bin Bulldozer 4/5 Flat Bulldozer 5/5
Pineapple 3/5 Nutella 3/5

Suitcase Bulldozer 4/5 Total 78.9%Candy Jar 5/5

To validate the real-world applicability and generalizability
of our framework, we evaluate our policy in 9 real-world
domains with novel everyday scenes and objects (Figure 1).
We test two objects in each domain: one object (a toy
bulldozer), shared across all domains, and one random object
(Figure 12b), each with five trials at different initial and goal
poses. We replaced the robot’s gripper to accommodate narrow
environments, wrapped with a high-friction glove to reduce
slipping. Details on the real-world setup are in Appendix H.

Table III shows the results of our policy across 9 real-world
domains. Overall, our policy demonstrates 78.9% success
rate, indicating that our framework facilitates the policy to



Lift

Reach

Viewpoint
Drop

Translate (No-Ceil)

Reorient (No-Ceil)

Translate (Ceil)

Inner Block

Reorient (Ceil)

High

Low

Domain Parameter

+ceil_height -ceil_height

+ceil_height

-ceil_height

+roll

-roll
+pitch

-pitch

1

A

B C

DE

F

9 10

3 4 5

6

7

8

2

right of

robot

left of

robot

away from

robot

towards

robot

-roll +roll-pitch

+pitch

Fig. 13: (inner block) UMAP projection of the modulation embedding zτ , colored by clusters from HDBScan. Unclustered
points are in black. (outer block) Isolated view of each cluster, colored by a representative domain parameter, such as ceiling
height or goal direction (to the left or right). The camera icon per each box denotes the viewpoint. The rendered scene shows
a domain and state that generated an embedding in a cluster, with the red and blue objects indicating the current object pose
and goal pose respectively.

transfer to diverse, unseen real-world environments, despite
only training in a simulation. The main failure modes of
our policy are, in decreasing order of frequency: torque limit
violation (5.56%); policy deadlock (4.44%); dropping objects
(4.44%); getting blocked by the environment (3.33%); and
perception error (3.33%). Detailed descriptions of these failure
modes are in Appendix H2.

D. Emergence of skills in HAMNET

We show that HAMNET automatically discovers different
manipulation skills and learns to sequence them. To do this,
we inspect the modulation embedding zτ (see Figure 6), which
decides the activation weight of each module. We collect a
dataset of zτ by running a trained policy in 25,000 randomly
sampled episodes in simulation. Since the high-dimensional
zτ is hard to interpret, we project zτ into a three-dimensional
manifold using UMAP [53] to visualize its structure.

To show that HAMNET discovers different skills, we apply
HDBSCAN [52] to these projections of zτ . Figure 13 shows
the result. The inner block of Figure 13 shows the extracted
clusters with different colors. We find that, without any
manually designed bias or knowledge, these clusters naturally
emerge and have semantically interpretable behaviors, such
as lifting (red), reaching (blue), reorienting with (yellow) and
without a ceiling (bright yellow), translation with (purple) and
without a ceiling (bright purple), and dropping objects (green).

The outer blocks marked with numbers show the rendering
of the situations in which these embeddings have been used.

They show that our policy also learns when to use these skills
based on the geometric constraint imposed by the environment,
and the subgoal the robot is trying to achieve. For instance,
to lift objects over platforms (Figure 13, 1⃝), the policy must
actively maintain contact between the object, wall, and the
gripper. When dropping objects (Figure 13, 10⃝), the robot
must carefully prevent them from bouncing or rolling off the
table. Similarly, the ceiling affects the policy’s reaching strate-
gies: with the ceiling above the object, the robot must approach
the object laterally (Figure 13, 8⃝); in open environments, the
robot can take overhand postures (Figure 13, 4⃝) instead.

The outer blocks marked with alphabets in Figure 13 show
that intra-cluster variation captures their behavioral variations
within a skill. For example, as you move horizontally within
the lifting cluster (Figure 13, a⃝) it models behavior that
pulls the object towards or away from the robot 2⃝, while the
vertical direction maps to its left or right 1⃝. While subtler
than the categorical differences across distinct skills like lifting
and reaching, the emergence of such intra-cluster variations
shows that HAMNET uses different activations of modules to
implement finer behavioral nuances.

To check if HAMNET can use these skills in sequence,
we analyze how zτ changes throughout a task. To highlight
the transitions, we label zτ at each step of an episode based
on the precomputed HDBScan clustering shown in Figure 13.
Figure 14 shows that the agent switches between behavioral
clusters based on its internal subgoal: in Figure 14a, the robot



Reach Lift Reorient Translate

(a) An episode where the agent lifts an object across a platform.

Reach Drop Reorient Translate

(b) An episode where the agent drops an object to a lower elevation.

Fig. 14: Illustration of how our architecture learns to use
different skills. Color bar in each subfigure shows the cluster
labels of zτ at each step, and the bottom shows the domain
rendering of representative keyframes. The red object is the
current object pose, and the blue object is the goal pose.

initiates with a reaching skill to approach the object while
avoiding obstacles. Afterward, the robot transitions to lift the
object to the top platform. After a successful lift, the robot
reorients the object to match the target orientation. Lastly, the
robot translates the object to its target pose. The sequence of
zτ changes when the problem changes: when the robot has
to drop an object to a lower platform instead (Figure 14b),
the robot follows a different sequence (reach-drop-reorient-
translate). This demonstrates that our architecture can (1)
discover its own subgoals and (2) activate different modules
to achieve different subgoals.

E. Simulated Benchmark in Realistic Domains

We release a simulated digital twin of our nine real-
world setups as a benchmark for non-prehensile manipulation
(Figure 15). The environment mesh is built using CAD,
Nerfstudio [84], and Polycam. Our benchmark comprises
353 objects: 9 custom scans from the real world, 21 from
GSO [21], and 323 from DGN [89]. For each domain and
object pair, we sample 5 stable initial- and goal-poses and
128 random collision-free robot initializations to evaluate
generality. Appendix G4 details domain configurations and
provides baseline results.

Fig. 15: Sample environments in our simulated benchmark.
From the top left: sink, circular bin, suitcase, basket, grill,
and cabinet. The axis on each object indicates its current pose,
while the other axis represents the target pose.

V. CONCLUSION

In this work, we propose a novel framework for non-
prehensile manipulation in general environments via deep
reinforcement learning in a simulation. Our framework com-
prises a modular architecture (HAMNET), a contact-based
object and environment representation (UNICORN), and a
procedural domain generation algorithm for diverse environ-
ment geometries. Compared to conventional architectures and
standard representations, our framework facilitates data- and
time-efficient training of a policy that generalizes to diverse
and unseen scenes. Despite solely training in synthetic en-
vironments in a simulation, our policy zero-shot generalizes
to unseen real-world environments and objects. Overall, our
combined framework achieves state-of-the-art performance in
non-prehensile manipulation of general objects in general
environments.

A. Limitations

Despite promising results, our approach has several limita-
tions that can be addressed in future work:

Improved efficiency of HAMNET. In HAMNET, the
parameters of the base network are updated at every step.
However, our qualitative analysis (Section IV-D) shows that
zτ , and the resulting predictions for the module activation
weights, remain stable for prolonged periods until a transition
triggers a change, such as a successful lift. Thus, reusing
the predicted network parameters over multiple steps can
potentially reduce the computational overhead.

Dynamics-aware object representation. While UNI-
CORN effectively represents object and environment geome-
tries, it neglects dynamic properties like mass and inertia,
which are critical for maneuvering objects with unusual dy-
namics, like roly-poly toys with non-uniform mass distribu-
tions. As such, one intriguing future research direction is to
extend the representation to include dynamics information,
potentially by incorporating memory [13, 30].

Generating fine-grained environment features. Our pro-
cedural generation pipeline relies on cuboidal primitives, lim-
iting the diversity of fine-grained geometric features (e.g.,
textures, curvatures, small overhangs). While our experiments
in the Grill, Drawer, and Circular Bin environments show
that the policy can still adapt to uneven and curved surfaces,
diversifying procedural generation through approaches like
geometric generative models [79], may enhance the policy’s
environmental generalization capability.

REFERENCES

[1] Karim Abou Zeid, Jonas Schult, Alexander Hermans,
and Bastian Leibe. Point2Vec for self-supervised repre-
sentation learning on point clouds. German Conference
on Pattern Recognition (GCPR), 2023.

[2] Arthur Allshire, Mayank MittaI, Varun Lodaya, Viktor
Makoviychuk, Denys Makoviichuk, Felix Widmaier,
Manuel Wüthrich, Stefan Bauer, Ankur Handa, and
Animesh Garg. Transferring dexterous manipulation
from gpu simulation to a remote real-world trifinger.



In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11802–11809. IEEE,
2022.

[3] Ronen Basri, Meirav Galun, Amnon Geifman, David
Jacobs, Yoni Kasten, and Shira Kritchman. Frequency
bias in neural networks for input of non-uniform den-
sity. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 685–694. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.press/v119/
basri20a.html.

[4] Emilio Bizzi and Vincent CK Cheung. The neural
origin of muscle synergies. Frontiers in Computational
Neuroscience, 7, 2013.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog,
Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan,
Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla,
Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Car-
olina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch,
Jornell Quiambao, Kanishka Rao, Michael S Ryoo,
Grecia Salazar, Pannag R Sanketi, Kevin Sayed, Jaspiar
Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega, Quan H
Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe
Yu, and Brianna Zitkovich. RT-1: Robotics Transformer
for Real-World Control at Scale. In Proceedings of
Robotics: Science and Systems, Daegu, Republic of
Korea, July 2023. doi: 10.15607/RSS.2023.XIX.025.

[6] Rich Caruana. Multitask learning. Machine learning,
28:41–75, 1997.

[7] Claire Chen, Preston Culbertson, Marion Lepert, Mac
Schwager, and Jeannette Bohg. TrajectoTree: Trajec-
tory optimization meets tree search for planning multi-
contact dexterous manipulation. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 8262–8268. IEEE, 2021.

[8] Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu,
Li Yuan, and Yufeng Yue. PointGPT: Auto-regressively
generative pre-training from point clouds. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=
rqE0fEQDqs.

[9] Tao Chen, Megha Tippur, Siyang Wu, Vikash Ku-
mar, Edward Adelson, and Pulkit Agrawal. Visual
dexterity: In-hand reorientation of novel and complex
object shapes. Science Robotics, 8(84):eadc9244, 2023.
doi: 10.1126/scirobotics.adc9244. URL https://www.
science.org/doi/abs/10.1126/scirobotics.adc9244.

[10] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Joon-
Young Lee, and Alexander Schwing. Putting the object
back into video object segmentation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3151–3161, 2024.

[11] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T.
Mason. Contact mode guided motion planning for
quasidynamic dexterous manipulation in 3d. In Interna-
tional Conference on Robotics and Automation (ICRA),
pages 2730–2736, 2022. doi: 10.1109/ICRA46639.
2022.9811872.

[12] Xianyi Cheng, Sarvesh Patil, Zeynep Temel, Oliver
Kroemer, and Matthew T Mason. Enhancing dexterity
in robotic manipulation via hierarchical contact explo-
ration. IEEE Robotics and Automation Letters, 9(1):
390–397, 2023.

[13] Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, October 2014. URL
https://aclanthology.org/D14-1179.

[14] Yoonyoung Cho, Junhyek Han, Yoontae Cho, and
Beomjoon Kim. CORN: Contact-based object rep-
resentation for nonprehensile manipulation of general
unseen objects. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=KTtEICH4TO.

[15] Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson.
The evolutionary origins of modularity. Proceedings.
Biological sciences / The Royal Society, 280:20122863,
03 2013. doi: 10.1098/rspb.2012.2863.

[16] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In
Advances in Neural Information Processing Systems,
volume 35, pages 16344–16359, 2022. URL https:
//proceedings.neurips.cc/paper files/paper/2022/file/
67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.
pdf.

[17] Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi.
Combinations of muscle synergies in the construction
of a natural motor behavior. Nature neuroscience, 6(3):
300–308, 2003.

[18] Dawson-Haggerty et al. trimesh. URL https://trimesh.
org/.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, June 2019.
doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423.

[20] Nadia Dominici, Yuri P. Ivanenko, Germana Cappellini,
Andrea d’Avella, Vito Mondı̀, Marika Cicchese, Adele

https://proceedings.mlr.press/v119/basri20a.html
https://proceedings.mlr.press/v119/basri20a.html
https://openreview.net/forum?id=rqE0fEQDqs
https://openreview.net/forum?id=rqE0fEQDqs
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://aclanthology.org/D14-1179
https://openreview.net/forum?id=KTtEICH4TO
https://openreview.net/forum?id=KTtEICH4TO
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://trimesh.org/
https://trimesh.org/
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


Fabiano, Tiziana Silei, Ambrogio Di Paolo, Carlo Gi-
annini, Richard E. Poppele, and Francesco Lacquaniti.
Locomotor primitives in newborn babies and their de-
velopment. Science, 334(6058):997–999, 2011. doi:
10.1126/science.1210617. URL https://www.science.
org/doi/abs/10.1126/science.1210617.

[21] Laura Downs, Anthony Francis, Nate Koenig, Brandon
Kinman, Ryan Hickman, Krista Reymann, Thomas B.
McHugh, and Vincent Vanhoucke. Google scanned
objects: A high-quality dataset of 3d scanned household
items. In International Conference on Robotics and
Automation (ICRA), pages 2553–2560, 2022. doi:
10.1109/ICRA46639.2022.9811809.

[22] Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff
Clune. Neural modularity helps organisms evolve to
learn new skills without forgetting old skills. PLOS
Computational Biology, 11(4):1–24, 04 2015. doi:
10.1371/journal.pcbi.1004128. URL https://doi.org/10.
1371/journal.pcbi.1004128.

[23] Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao
Gou, Jirong Liu, Hengxu Yan, Wenhai Liu, Yichen
Xie, and Cewu Lu. AnyGrasp: Robust and efficient
grasp perception in spatial and temporal domains. IEEE
Transactions on Robotics, 39(5):3929–3945, 2023. doi:
10.1109/TRO.2023.3281153.

[24] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei
Zhang, Yezhou Yang, and Zicheng Liu. {SEED}:
Self-supervised distillation for visual representation.
In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=
AHm3dbp7D1D.

[25] Mehdi Fatemi and Arash Tavakoli. Orchestrated value
mapping for reinforcement learning. In International
Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=c87d0TS4yX.

[26] Juan Del Aguila Ferrandis, João Moura, and Sethu Vi-
jayakumar. Nonprehensile planar manipulation through
reinforcement learning with multimodal categorical ex-
ploration. arXiv preprint arXiv:2308.02459, 2023.

[27] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. Sharpness-Aware Minimiza-
tion for Efficiently Improving Generalization. art.
arXiv:2010.01412, 2020.

[28] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan
Girgin, Igor Mordatch, and Olivier Bachem. Brax - a
differentiable physics engine for large scale rigid body
simulation, 2021.

[29] Tomer Galanti and Lior Wolf. On the modularity of
hypernetworks. arXiv: Learning, 2020.

[30] Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces, 2024. URL https:
//arxiv.org/abs/2312.00752.

[31] David Ha, Andrew M. Dai, and Quoc V. Le. Hyper-
networks. In International Conference on Learning
Representations, 2017. URL https://openreview.net/
forum?id=rkpACe1lx.

[32] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16000–16009, June 2022.

[33] Ahmed Hendawy, Jan Peters, and Carlo D’Eramo.
Multi-task reinforcement learning with mixture of or-
thogonal experts. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=aZH1dM3GOX.

[34] Yifan Hou and Matthew T. Mason. Robust execution
of contact-rich motion plans by hybrid force-velocity
control. In International Conference on Robotics and
Automation (ICRA). IEEE, may 2019. doi: 10.1109/icra.
2019.8794366. URL https://doi.org/10.1109%2Ficra.
2019.8794366.

[35] Wenlong Huang, Igor Mordatch, Pieter Abbeel, and
Deepak Pathak. Generalization in dexterous manipu-
lation via geometry-aware multi-task learning. arXiv
preprint arXiv:2111.03062, 2021.

[36] Siddhant M. Jayakumar, Wojciech M. Czarnecki, Jacob
Menick, Jonathan Schwarz, Jack Rae, Simon Osindero,
Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multi-
plicative interactions and where to find them. In Interna-
tional Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=rylnK6VtDH.

[37] Shailesh Kantak, James Stinear, Ethan Buch, and
Leonardo Cohen. Rewiring the brain: Potential role
of the premotor cortex in motor control, learning, and
recovery of function following brain injury. Neuroreha-
bilitation and neural repair, 26:282–92, 09 2011. doi:
10.1177/1545968311420845.

[38] Imin Kao, Kevin M. Lynch, and Joel W. Burdick. Con-
tact Modeling and Manipulation. In Springer Handbook
of Robotics, 2016.

[39] Minchan Kim, Junhyek Han, Jaehyung Kim, and
Beomjoon Kim. Pre-and post-contact policy decom-
position for non-prehensile manipulation with zero-
shot sim-to-real transfer. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 10644–10651, 2023. doi: 10.1109/IROS55552.
2023.10341657.

[40] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 4015–4026, 2023.

[41] Jacky Liang, Xianyi Cheng, and Oliver Kroemer. Learn-
ing preconditions of hybrid force-velocity controllers
for contact-rich manipulation. In Proceedings of The
6th Conference on Robot Learning, volume 205 of
Proceedings of Machine Learning Research, pages 679–
689. PMLR, 14–18 Dec 2023. URL https://proceedings.
mlr.press/v205/liang23a.html.

[42] Gidi Littwin and Lior Wolf. Deep meta functionals for

https://www.science.org/doi/abs/10.1126/science.1210617
https://www.science.org/doi/abs/10.1126/science.1210617
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1371/journal.pcbi.1004128
https://openreview.net/forum?id=AHm3dbp7D1D
https://openreview.net/forum?id=AHm3dbp7D1D
https://openreview.net/forum?id=c87d0TS4yX
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=aZH1dM3GOX
https://openreview.net/forum?id=aZH1dM3GOX
https://doi.org/10.1109%2Ficra.2019.8794366
https://doi.org/10.1109%2Ficra.2019.8794366
https://openreview.net/forum?id=rylnK6VtDH
https://proceedings.mlr.press/v205/liang23a.html
https://proceedings.mlr.press/v205/liang23a.html


shape representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
1824–1833, 2019.

[43] Kendall Lowrey, Svetoslav Kolev, Jeremy Dao, Aravind
Rajeswaran, and Emanuel Todorov. Reinforcement
Learning for Non-Prehensile Manipulation: Transfer
from Simulation to Physical System. In International
Conference on Simulation, Modeling, and Programming
for Autonomous Robots, 2018.

[44] Kevin M. Lynch and Matthew T. Mason. Dynamic
nonprehensile manipulation: Controllability, planning,
and experiments. The International Journal of
Robotics Research, 18(1):64–92, 1999. doi: 10.1177/
027836499901800105. URL https://doi.org/10.1177/
027836499901800105.

[45] James MacGlashan, Evan Archer, Alisa Devlic, Takuma
Seno, Craig Sherstan, Peter Wurman, and Peter Stone.
Value function decomposition for iterative design of
reinforcement learning agents. In Advances in Neu-
ral Information Processing Systems, volume 35, pages
12001–12013, 2022.

[46] Y. Maeda, H. Kijimoto, Y. Aiyama, and T. Arai.
Planning of graspless manipulation by multiple robot
fingers. In International Conference on Robotics and
Automation (ICRA), volume 3, pages 2474–2479, 2001.
doi: 10.1109/ROBOT.2001.932994.

[47] Yusuke Maeda and Tamio Arai. Planning of graspless
manipulation by a multifingered robot hand. Advanced
Robotics, 19(5):501–521, 2005.

[48] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael
Laskey, Richard Doan, Xinyu Liu, Juan Aparicio, and
Ken Goldberg. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. In Proceedings of Robotics: Science and
Systems, Cambridge, Massachusetts, July 2017. doi:
10.15607/RSS.2017.XIII.058.

[49] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint
arXiv:2108.10470, 2021.

[50] Roberto Martı́n-Martı́n, Michelle A. Lee, Rachel Gard-
ner, Silvio Savarese, Jeannette Bohg, and Animesh
Garg. Variable impedance control in end-effector space:
An action space for reinforcement learning in contact-
rich tasks. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1010–
1017, 2019. doi: 10.1109/IROS40897.2019.8968201.

[51] David A. McCrea and Ilya A. Rybak. Organiza-
tion of mammalian locomotor rhythm and pattern
generation. Brain Research Reviews, 57(1):134–146,
2008. doi: https://doi.org/10.1016/j.brainresrev.2007.
08.006. URL https://www.sciencedirect.com/science/
article/pii/S0165017307001798.

[52] Leland McInnes, John Healy, and Steve Astels. hdb-

scan: Hierarchical density based clustering. The Journal
of Open Source Software, 2(11):205, 2017.

[53] Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Grossberger. Umap: Uniform manifold approximation
and projection. The Journal of Open Source Software,
3(29):861, 2018.

[54] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space.
In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019.

[55] Kiyokazu Miyazawa, Yusuke Maeda, and Tamio Arai.
Planning of graspless manipulation based on rapidly-
exploring random trees. In The International Sympo-
sium on Assembly and Task Planning: From Nano to
Macro Assembly and Manufacturing, pages 7–12. IEEE,
2005.

[56] Igor Mordatch, Zoran Popović, and Emanuel Todorov.
Contact-Invariant Optimization for Hand Manipulation.
In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 2012.

[57] João Moura, Theodoros Stouraitis, and Sethu Vijayaku-
mar. Non-prehensile planar manipulation via trajec-
tory optimization with complementarity constraints. In
International Conference on Robotics and Automa-
tion (ICRA), pages 970–976, 2022. doi: 10.1109/
ICRA46639.2022.9811942.

[58] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell.
Policy invariance under reward transformations: Theory
and application to reward shaping. In Proceedings
of the Sixteenth International Conference on Machine
Learning, page 278–287, 1999.

[59] NVIDIA. TensorRT: A High-Performance Deep Learn-
ing Inference Library. https://github.com/NVIDIA/
TensorRT, 2024.

[60] Jose Javier Gonzalez Ortiz, John Guttag, and
Adrian Dalca. Magnitude invariant parametrizations
improve hypernetwork learning. arXiv preprint
arXiv:2304.07645, 2023.

[61] Simon A. Overduin, Andrea d’Avella, Jose M. Carmena,
and Emilio Bizzi. Microstimulation activates a handful
of muscle synergies. Neuron, 76(6):1071–1077, Dec
2012. doi: 10.1016/j.neuron.2012.10.018. URL https:
//doi.org/10.1016/j.neuron.2012.10.018.

[62] Simon A. Overduin, Andrea d’Avella, Jinsook Roh,
Jose M. Carmena, and Emilio Bizzi. Representation
of muscle synergies in the primate brain. Journal
of Neuroscience, 35(37):12615–12624, 2015. doi: 10.
1523/JNEUROSCI.4302-14.2015. URL https://www.
jneurosci.org/content/35/37/12615.

[63] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL:
A general purpose library for collision and proximity
queries. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3859–3866, 2012. doi:
10.1109/ICRA.2012.6225337.

[64] Tao Pang, H. J. Terry Suh, Lujie Yang, and Russ

https://doi.org/10.1177/027836499901800105
https://doi.org/10.1177/027836499901800105
https://www.sciencedirect.com/science/article/pii/S0165017307001798
https://www.sciencedirect.com/science/article/pii/S0165017307001798
https://github.com/NVIDIA/TensorRT
https://github.com/NVIDIA/TensorRT
https://doi.org/10.1016/j.neuron.2012.10.018
https://doi.org/10.1016/j.neuron.2012.10.018
https://www.jneurosci.org/content/35/37/12615
https://www.jneurosci.org/content/35/37/12615


Tedrake. Global planning for contact-rich manipulation
via local smoothing of quasi-dynamic contact mod-
els. IEEE Transactions on Robotics, 39(6):4691–4711,
2023. doi: 10.1109/TRO.2023.3300230.

[65] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for
point cloud self-supervised learning. In European con-
ference on computer vision, pages 604–621. Springer,
2022.

[66] William Peebles and Saining Xie. Scalable diffu-
sion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 4195–4205, October 2023.

[67] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-Real Transfer of
Robotic Control with Dynamics Randomization. In
International Conference on Robotics and Automation,
2018.

[68] Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the
AAAI conference on artificial intelligence, volume 32,
2018.

[69] Edoardo M Ponti, Alessandro Sordoni, Yoshua Bengio,
and Siva Reddy. Combining modular skills in multitask
learning. arXiv preprint arXiv:2202.13914, 2022.

[70] Michael Posa, Cecilia Cantu, and Russ Tedrake. A
Direct Method for Trajectory Optimization of Rigid
Bodies Through Contact. The International Journal of
Robotics Research, 2014.

[71] Roberto Prevete, Francesco Donnarumma, Andrea
d’Avella, and Giovanni Pezzulo. Evidence for sparse
synergies in grasping actions. Scientific Reports, 8(1):
616, Jan 2018. doi: 10.1038/s41598-017-18776-y. URL
https://doi.org/10.1038/s41598-017-18776-y.

[72] Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

[73] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural
networks. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 5301–5310.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/rahaman19a.html.

[74] Daniel Rebain, Mark J. Matthews, Kwang Moo Yi,
Gopal Sharma, Dmitry Lagun, and Andrea Tagliasac-
chi. Attention beats concatenation for conditioning
neural fields. Transactions on Machine Learning Re-
search, 2023. URL https://openreview.net/forum?id=
GzqdMrFQsE.

[75] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-
teenth international conference on artificial intelligence

and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[76] Elad Sarafian, Shai Keynan, and Sarit Kraus. Re-
composing the reinforcement learning building blocks
with hypernetworks. In International Conference on
Machine Learning, pages 9301–9312. PMLR, 2021.

[77] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[78] Haizhou Shi, Youcai Zhang, Siliang Tang, Wenjie Zhu,
Yaqian Li, Yandong Guo, and Yueting Zhuang. On
the efficacy of small self-supervised contrastive models
without distillation signals. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(2):2225–2234,
Jun. 2022. doi: 10.1609/aaai.v36i2.20120. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/20120.

[79] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov,
Tatiana Tommasi, Daniele Sirigatti, Vladislav Rosov,
Angela Dai, and Matthias Nießner. MeshGPT: Generat-
ing triangle meshes with decoder-only transformers. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 19615–
19625, June 2024.

[80] Olaf Sporns and Richard F. Betzel. Modular
brain networks. Annual Review of Psychology,
67(Volume 67, 2016):613–640, 2016. doi:
https://doi.org/10.1146/annurev-psych-122414-033634.
URL https://www.annualreviews.org/content/journals/
10.1146/annurev-psych-122414-033634.

[81] Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi
Tomizuka. PaCo: Parameter-compositional multi-task
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, 2022. URL https://openreview.
net/forum?id=LYXTPNWJLr.

[82] Balakumar Sundaralingam, Siva Kumar Sastry Hari,
Adam Fishman, Caelan Garrett, Karl Van Wyk, Valts
Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, Nathan Ratliff, and Dieter Fox.
cuRobo: Parallelized collision-free minimum-jerk robot
motion generation, 2023.

[83] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall,
Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and
Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains.
In Advances in Neural Information Processing
Systems, volume 33, pages 7537–7547, 2020. URL
https://proceedings.neurips.cc/paper files/paper/2020/
file/55053683268957697aa39fba6f231c68-Paper.pdf.

[84] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong
Li, Brent Yi, Justin Kerr, Terrance Wang, Alexan-
der Kristoffersen, Jake Austin, Kamyar Salahi, Ab-
hik Ahuja, David McAllister, and Angjoo Kanazawa.
Nerfstudio: A modular framework for neural radiance
field development. In ACM SIGGRAPH Conference

https://doi.org/10.1038/s41598-017-18776-y
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://openreview.net/forum?id=GzqdMrFQsE
https://openreview.net/forum?id=GzqdMrFQsE
https://ojs.aaai.org/index.php/AAAI/article/view/20120
https://ojs.aaai.org/index.php/AAAI/article/view/20120
https://www.annualreviews.org/content/journals/10.1146/annurev-psych-122414-033634
https://www.annualreviews.org/content/journals/10.1146/annurev-psych-122414-033634
https://openreview.net/forum?id=LYXTPNWJLr
https://openreview.net/forum?id=LYXTPNWJLr
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf


Proceedings, 2023.
[85] Lena H Ting and J Lucas McKay. Neuromechanics of

muscle synergies for posture and movement. Current
opinion in neurobiology, 17(6):622—628, December
2007. doi: 10.1016/j.conb.2008.01.002. URL https:
//europepmc.org/articles/PMC4350235.

[86] Matthew C. Tresch, Philippe Saltiel, and Emilio Bizzi.
The construction of movement by the spinal cord.
Nature Neuroscience, 2(2):162–167, Feb 1999. doi:
10.1038/5721. URL https://doi.org/10.1038/5721.

[87] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. UniDex-
Grasp++: Improving dexterous grasping policy learning
via geometry-aware curriculum and iterative generalist-
specialist learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
3891–3902, 2023.

[88] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby,
and Matt J. Kusner. Unsupervised point cloud pre-
training via occlusion completion. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9782–9792, October 2021.

[89] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen
Xu, Puhao Li, Tengyu Liu, and He Wang. Dexgraspnet:
A large-scale robotic dexterous grasp dataset for general
objects based on simulation. In IEEE International
Conference on Robotics and Automation (ICRA), pages
11359–11366. IEEE, 2023.

[90] Shaochen Wang, Zhangli Zhou, and Zhen Kan. When
transformer meets robotic grasping: Exploits context for
efficient grasp detection. IEEE Robotics and Automa-
tion Letters, 7(3):8170–8177, 2022. doi: 10.1109/LRA.
2022.3187261.

[91] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birch-
field. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17868–17879, 2024.

[92] Albert Wu, Ruocheng Wang, Sirui Chen, Clemens Epp-
ner, and C Karen Liu. One-shot transfer of long-
horizon extrinsic manipulation through contact retarget-
ing. arXiv preprint arXiv:2404.07468, 2024.

[93] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi,
Leonidas Guibas, and Or Litany. PointContrast: Unsu-
pervised pre-training for 3d point cloud understanding.
In European Conference on Computer Vision (ECCV),
2020.

[94] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang.
Multi-task reinforcement learning with soft modular-
ization. Advances in Neural Information Processing
Systems, 33:4767–4777, 2020.

[95] Lin Yen-Chen, Andy Zeng, Shuran Song, Phillip Isola,
and Tsung-Yi Lin. Learning to see before learning
to act: Visual pre-training for manipulation. In IEEE
International Conference on Robotics and Automa-
tion (ICRA), pages 7286–7293, 2020. doi: 10.1109/

ICRA40945.2020.9197331.
[96] Tianhe Yu, Saurabh Kumar, Abhishek Gupta,

Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning.
In Advances in Neural Information Processing
Systems, volume 33, pages 5824–5836, 2020. URL
https://proceedings.neurips.cc/paper files/paper/2020/
file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

[97] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang,
Jie Zhou, and Jiwen Lu. Point-BERT: Pre-training 3d
point cloud transformers with masked point modeling.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
19313–19322, June 2022.

[98] Weihao Yuan, Johannes A Stork, Danica Kragic,
Michael Y Wang, and Kaiyu Hang. Rearrangement
with Nonprehensile Manipulation Using Deep Rein-
forcement Learning. In International Conference on
Robotics and Automation, 2018.

[99] Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y
Wang, and Johannes A Stork. End-to-End Nonprehen-
sile Rearrangement with Deep Reinforcement Learning
and Simulation-to-Reality Transfer. Robotics and Au-
tonomous Systems, 2019.

[100] Amy Zhang, Rowan Thomas McAllister, Roberto Ca-
landra, Yarin Gal, and Sergey Levine. Learning invari-
ant representations for reinforcement learning without
reconstruction. In International Conference on Learning
Representations, 2021. URL https://openreview.net/
forum?id=-2FCwDKRREu.

[101] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang,
Bin Zhao, Dong Wang, Yu Qiao, and Hongsheng Li.
Point-M2AE: Multi-scale masked autoencoders for hi-
erarchical point cloud pre-training. In Advances in
Neural Information Processing Systems, volume 35,
pages 27061–27074, 2022.

[102] Wenxuan Zhou and David Held. Learning to grasp
the ungraspable with emergent extrinsic dexterity. In
Conference on Robot Learning, pages 150–160. PMLR,
2023.

[103] Wenxuan Zhou, Bowen Jiang, Fan Yang, Chris Paxton,
and David Held. HACMan: Learning hybrid actor-
critic maps for 6d non-prehensile manipulation. In
Proceedings of The 7th Conference on Robot Learning,
volume 229 of Proceedings of Machine Learning Re-
search, pages 241–265. PMLR, 06–09 Nov 2023. URL
https://proceedings.mlr.press/v229/zhou23a.html.

[104] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations
in neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 5745–5753, 2019.

[105] Claudio Zito, Rustam Stolkin, Marek Kopicki, and
Jeremy L Wyatt. Two-Level RRT Planning for Robotic
Push Manipulation. In International Conference on
Intelligent Robots and Systems, 2012.

https://europepmc.org/articles/PMC4350235
https://europepmc.org/articles/PMC4350235
https://doi.org/10.1038/5721
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
https://proceedings.mlr.press/v229/zhou23a.html


APPENDIX

A. Details on training UNICORN

1) Contact dataset generation: Since predicting contacts
between distant or fully overlapping objects is trivial, we prior-
itize sampling near-contact object configurations to encourage
our model to learn informative representations. To achieve
this, we follow CORN [14] and randomly sample two objects
from the object dataset and position each object at a random
SE(3) pose. Since this initial placement is unlikely to result in
objects in colliding configurations, we first move the objects
tangent to each other by measuring the shortest displacement
between the two objects, and translating one of the objects by
that amount so that they come into contact with each other.
Afterward, we apply a small Gaussian noise to the poses so
that the objects either slightly clip into each other or narrowly
remain collision-free.

After positioning the objects, we generate the point clouds
and contact labels. We sample the point clouds uniformly from
the surface of each object, then label the points based on
whether they fall within the other object. Since computing
point-mesh intersection is often unreliable, we first apply con-
vex decomposition to each object, then compute whether each
point falls within any of the other object’s convex parts, and
vice versa. Overall, this procedure yields approximately half of
the dataset comprising objects in colliding configurations, with
the other half in near-contact configurations; the representation
model must learn to distinguish the two scenarios. We iterate
this procedure to generate a dataset comprising 500,000 point
cloud pairs and their contact labels.

2) Details on pretraining pipeline: The contact decoder
is a three-layer conditional MLP (CMLP), where each layer
is a residual block with conditional batch normalization
(CBN) [54]. CBN transforms each layer’s output features by
applying batch normalization, whose affine parameters are
mapped from the conditioning input zBN with a single linear
layer.

During training, we apply data augmentation by rotating,
translating, and scaling both clouds, plus a small Gaussian
noise. After patchifying the point clouds, we adjust the propor-
tion of the inputs to the contact decoder so that approximately
half of the input pairs are in contact (positive). This is done
by resampling the positive patches with probability f/P and
negative patches with probability (1−f)/N , where f denotes
the target fraction of positive labels, P denotes the number
of positive patches, and N denotes the number of negative
patches. The hyperparameters for pretraining are in Table IV.

B. Details on Procedural Domain Generation

1) Environment Geometry: The flowchart in Figure 16
depicts our procedural generation pipeline, which samples
environment geometries by composing a set of cuboidal prim-
itives. Our pipeline is split into two main parts: the interior of
the domain (Figure 16, purple), comprising the planar surface
at various elevations and sloped hills formed by the lateral
and longitudinal base plates (see Figure 9), and the exterior

TABLE IV: Pretraining pipeline hyperparameters.

Hyperparameter Value

Batch size 1024
Optimizer SAM [27]
Learning rate schedule cosine
Base learning rate 0.0002
Min. learning rate 1e-6
Max. gradient norm 1,000
Weight decay 0.001
Rotational augmentation (−π, +π)
Translational augmentation (-0.1, +0.1)
Scale augmentation (e−1, e+1)
Noise augmentation 0.01
Positive patch fraction 0.5
Decoder size (128, 128)

of the domain (Figure 16, cyan) comprising the ceiling and
walls.

Our procedure begins by sampling the overall scene dimen-
sions, i.e., whether a given table will be narrow or wide. This
determines the overall scale of the cuboid primitives to fit
within the bounds of the scene dimensions. Based on this, we
compose the interior of the domain from a set of cuboidal
plates. Each of the lateral and longitudinal axes comprises
five plates: three planar plates form level surfaces at various
heights, joined by two interim plates that form walls at various
slopes.

To generate the interior of the domain (Figure 16, purple),
we start by randomly sampling the plate dimensions, while
ensuring the sum of the planar plate dimensions along each
axis does not exceed the scene bounds. Afterward, the eleva-
tions of planar plates are randomly sampled by designating
whether each plate is a top plate or a bottom plate, separated
by a randomly sampled difference in elevation. Afterward, we
sample the angles of the slopes corresponding to the interim
plates that connect between two planar plates. Combining the
planar and interim plates for both axes constructs the base
surface of the domain, resulting in structural layouts such as
sinks, bumps, or valleys (Figure 17).

Next, we generate the exterior of the domain, composed of
walls and ceilings (Figure 16, cyan). Since these obstructions
directly impact the accessibility of the workspace, we take a
multi-step approach for positioning them. First, we randomly
sample whether the ceiling should exist in the domain. Then,
if the ceiling is present, the front-facing wall is deactivated to
allow for the robot’s entry. The remaining walls are randomly
configured while ensuring at least one load-bearing wall is
added on one of the four sides to support the ceiling. The
disabled features are hidden beneath the tabletop to prevent
interaction with other simulated entities.

Since the height of the ceiling heavily influences the acces-
sibility of the object, we implement two different procedures
to determine ceiling heights: nominal and tight (Figure 16,



Ceiling Height Block

Ceiling Type?

Sample
Ceiling Height

Sample
Gap Height

Has Top Plate?

Add Plate
Elevation Offset

Add Object
Height

Sample
Table Dim &

Height

Sample Scene
Layout

Start

Exterior Block

Ceiling present?

Sample
Ceiling
Height

Add One
Support Wall

Add ceiling

Add
Remaining

Walls

No

Nominal

No

Sample
Presence of

Walls & Ceilings

Sample
Base Plate

Dimensions

Sample
Base Plate
Elevations

Sample
Interim Plate

Slopes

Add Base &
Interim
Plates

Interior Block

Exterior
Generation

Interior
Generation
(Lateral Axis)

Interior
Generation
(Longitudinal

Axis)
Merge

Geometries

Randomize
Translational

Offset

Randomize
dynamics

parameters

End

Deactivate
front wall

Yes

Tight

Yes

Fig. 16: Flowchart for our procedural generation pipeline. The leftmost flowchart describes the overall procedure; the expanded
blocks (purple, cyan, and green) on the right show the subroutines in detail.

Fig. 17: Additional examples from our environment genera-
tion algorithm. While fully procedural and randomized, our
pipeline yields geometries resembling those of real-world
scenes, such as (from the top left): cabinet, basket, sink, valley,
countertop, and step. Walls and ceilings are rendered with
transparent green to distinguish them from the base plates.
The red object indicates the object at initialization, and the
blue object indicates the goal pose of the object.

green). The heights of nominal-type ceilings are simply sam-
pled from a uniform distribution with a sufficient margin. On
the other hand, heights of tight-type ceilings are determined
by adding a small gap to the object height, where the height of
the gap is drawn from a uniform distribution. Lastly, in both
cases, if the interior of the domain has elevated platforms such
as steps or bumps, we raise the ceiling heights by the height
of the platform to prevent the object from intersecting with
the ceiling.

After constructing the overall environment geometry, we

further randomize the environment by shifting its position
along each of the x, y, and z axes and adjusting its surface
friction coefficients. Table V lists the parameters for our
procedural generation scheme.

TABLE V: Scene parameters and their ranges in our proce-
dural generation pipeline. All angles are in degrees, and di-
mensions are in meters. U: uniform distribution; B: Bernoulli
distribution.

Parameter Value

table dim.x U(0.255, 0.51)
table dim.y U(0.325, 0.65)
table dim.z U(0.2, 0.4)
table pos.x U(0.0, 0.1)
table pos.y U(-0.15, 0.15)
table pos.z U(0.1, 0.8)
ramp angle U(0.0, 30) × 4
plate height U(0.0, 0.15) × 6
ceiling height U(0.3, 0.5)
gap height U(0.03, 0.05)
ceil mask B(0.5)
wall mask B(0.5) × 4
table friction U(0.2, 0.6)

2) Object Placement: Since our environment geometries
change at the start of each episode, we must sample stable
and collision-free object placements online to compute the
initial and goal poses. Since this process is time-consuming,
we precompute a set of stable object orientations as in [14] by
dropping them in a simulation. Afterward, we also precompute
the planar radius for each of the object’s stable orientations



as the distance to the farthest point on the object from the
object’s center.

For each episode, we sample object poses by combining one
of the stable orientations with the position sampled from the
horizontal plates in the environment. To compute collision-free
and stable placements, we use the object’s precomputed radius
to serve as the minimum distance away from the nearest wall
or edge of the plates.

We first sample the goal poses for the objects, then sample
their initial poses while ensuring sufficient separation from the
goal in terms of both its position and orientation. This prevents
the episode from terminating in success immediately. When
sampling initial and goal poses in domains with height dif-
ferences between plates, we bias the proportions to encourage
the goal poses to be on elevated platforms compared to the
initial poses, which favors sampling more challenging tasks
where the robot must lift objects across a slope or a wall in
the environment.

C. Simulation-to-Real Transfer Pipeline

The policy trained in simulation cannot be directly trans-
ferred to the real world. This is for two reasons. First, in
contact-rich scenarios like non-prehensile object manipulation,
the frequent contact between the robot and the object or
the environment is prone to trigger hardware torque-limit
violations. Second, the real-world policy does not have access
to privileged information as in the simulation, such as the
object’s mass and dynamics properties.

To overcome the torque-limit violations, we adopt two
main strategies: action magnitude curriculum and cartesian-
space action clipping, both of which reduce the scale of the
policy actions to encourage conservative motions. To over-
come the second issue of unavailable observations, we adopt
teacher-student distillation, in which the student replicates
the teacher’s actions solely from observations that would be
available in the real world.

1) Action Magnitude Curriculum: In our domain, the robot
frequently experiences contact with the object or the envi-
ronment. However, when the policy operates at high velocity
under mismatched robot dynamics due to the sim-to-real
gap, such frequent contact may trigger hardware torque-limit
violation when the impact is larger than expected.

As the robot must move the object through contact, the
impact is inevitable. The policy cannot readily learn to prevent
high-impact collisions either, since accurately reproducing the
exact impact force in the simulation is challenging due to the
sim-to-real gap. To circumvent this, we encourage the policy
to perform generally conservative motions.

To this end, we adopt an action-magnitude curriculum
inspired by the scheme from Kim et al. [39], where the
maximum bounds of the subgoal residual that the policy can
output is reduced gradually. During initial training, we start
with the maximum joint-space residual magnitude ξ = ξmax

to facilitate the policy’s exploration. We then gradually reduce
ξ to the target magnitude ξ∗, deemed safer for execution on
the real robot. We apply different ξmax and ξ∗ values for the

large and small joints for the FR3 arm. Our reduction schedule

follows a geometric sequence with ratio ξ∗

ξmax

Ns
Nt , where Nt

and Ns are hyperparameters that denote the total number of
simulation steps for annealing and the interval between suc-
cessive annealing steps, respectively. Detailed hyperparameters
are in Table VI

TABLE VI: Sim2real hyperparameters.

Hyperparameter Value

ξ∗ (large joint) 0.16
ξmax (large joint) 0.26
ξ∗ (small joint) 0.08
ξmax (small joint) 0.21

Ns 1024
Nt 2e6
ϵx 0.12
ϵmax
x 0.24
α 0.8

2) Cartesian-space Action Clipping: When using joint-
space actions, multiple joints can simultaneously contribute to
the same Cartesian direction. Despite reducing overall action
magnitude, the sum of individual joint actions may still result
in large end-effector movements, leading to high-force impacts
that abort the robot. While further reducing the joint space
could mitigate this, it would significantly degrade the robot’s
dexterity and strength.

Algorithm 1 Cartesian-space action clipping algorithm.

Require: Policy πθ, robot joint position q, cartesian action
bound ϵx, damping parameter λ

Ensure: Clamped joint-space subgoal residual ∆qclamped

1: J = δx
δq |q

2: ∆q ∼ πθ(s)
3: ∆x = J∆q
4: ∆xexcess = ∆x · ||∆x||−ϵx

||∆x||
5: ∆qexcess = JT (JJT + λ2I)−1∆xexcess

6: ∆qclamped = ∆q −∆qexcess

Instead, we devise a scheme to clamp the joint residuals
based on the projected end-effector space movement to reside
within the bound ϵx with minimal change to the original
action, shown in Algorithm 1. We first compute the Jacobian
J of the robot in the current configuration (line 1). Then,
we project the joint-space residuals ∆q to the Cartesian-
space end-effector movement ∆x based on the Jacobian J
(line 2-3). If the estimated end-effector movement exceeds
the predefined Cartesian bound ϵx, we compute the excess
movement ∆xexcess compared to ϵx (line 4), then subtract
the excess from the original joint residuals by re-projecting
∆xexcess to ∆qexcess based on damped least-squares method
(line 5-6). Since clipping the action bounds potentially subjects
the policy to a large behavioral change, we fine-tune the policy



Student Modulation Network

MLP

Student Base Network

MLPGRU
concat

Student Geometry Encoder

[EMB] token

[EMB] token

[EMB] token

	Object current  
point cloud


Patch

Trans-

former

Environment 
point cloud

Local environment 
point cloud

Patch

Trans-

former

Patch

Trans-

former

Cross 
Attent

ion

Joint State

Prev Action

Hand State

Rel. Pose Goal

Tokenize

(MLP)

concat
GRU

Action 

DAgger

Teacher

Action : Pre-trained


  (Frozen)

: Training part

: Distill

Module-wise 
activation factor

Softmax

zNzG

z1zG

z1zL

zNzL

z1zO

zNzO

Fig. 18: Illustration of student policy architecture. As in the
teacher network, the student architecture comprises a geometry
encoder, a modulation network, and a base network.

by starting with a large Cartesian bound ϵmax
x and gradually

annealing it down to the target ϵx.
In addition to the magnitude scaling and Cartesian space

clipping, we introduce a joint residual smoothing and energy-
reducing loss for suppressing jerky motion during real-world
deployment. Specifically, the smoothed residual ∆q̄t is com-
puted from the original joint residual ∆qt with exponential
moving average: ∆q̄t = αqt+(1−α)∆q̄t−1, where α ∈ [0, 1].
The smoothed value ∆q̄t is then used to control the robot.
The energy-reducing loss, computed by L2 norm of power
||
∑7

i=1 τiq̇i||2, is added as a regularizing loss during policy
training.

3) Teacher-Student Distillation: During policy training, we
utilize privileged information such as coefficients of friction,
restitution, and the object’s inertial parameters and object
velocity, which are not generally observable in the real world.
As a result, the trained policy cannot operate without these
quantities. To address this, we distill the trained teacher policy
into a student policy that operates based on observations
available in the real world. During distillation, we employ
DAgger [75], where the student policy replicates the actions of
the teacher solely based on the available observations through
supervised learning during the simulation rollout.

As illustrated in Figure 18, the student policy shares a
similar architecture with the teacher policy, consisting of a
geometry encoder (red), a modulation network (green), and a
base network (blue). As in the teacher, the student modulation
network generates the weights for the student base network
based on the outputs of the geometry encoder. The student base
network then produces actions based on both the generated
weights from the modulation network and the state inputs.

However, because the student policy must estimate the
teacher policy’s actions with limited information, we incor-
porate a Gated Recurrent Unit (GRU) [13] into both the mod-
ulation network and the base network. This allows the student
model to aggregate information from previous observations,
helping it infer the teacher policy’s actions more effectively.

D. MDP Design

Table VII summarizes the design of our MDP. We represent
all poses as 3D translation and 6D orientation to facilitate

learning [104], and the goal is given as a relative pose from
the current object pose. Object and scene geometries are given
as surface-sampled point clouds.

Our action space A consists of joint residuals ∆q ∈ R7 and
controller gains, parameterized by proportional gains kp ∈ R7

and the damping ratio ρ ∈ R7 that maps to the damping
gain kd as ρ

√
kp, following [50, 39]. The resulting torque

for each joint is computed as τ = kp∆q − kdq̇. While
prior works adopt Cartesian-space actions [103, 14], we adopt
joint-space actions, which enables direct control of individual
robot links to avoid collisions against the environment during
manipulation.

The reward r(st, at, st+1) in our domain is defined as a sum
of the task success reward rs, goal-reaching reward rr and the
contact-inducing reward rc: r = rs + λrrr + λcrc, where λr

and λc are scaling coefficients for the respective rewards. Since
rs = 1suc is sparsely given, we incorporate shaping rewards
rr and rc as potential functions of the form γϕ(s′)−ϕ(s) with
the discount factor γ ∈ [0, 1), which preserves policy optimal-
ity [58]. Specifically, we have ϕr(s) = − log (cg · do,g(s) + 1)
for rr, and ϕc(s) = − log (cr · dh,o(s) + 1) for rc, where
cg, cr ∈ R are scaling coefficients for the distance-based
potential functions; do,g(s) is the relative distance between the
current object and the goal pose, based on the bounding-box
distance [2]; dh,o(s) is the hand-object distance between the
object and the tip of the end-effector. Task success is achieved
when the object’s pose is within 0.1m and 0.1 radians of the
target pose. The episode terminates if (1) the object reaches
the goal, (2) the object is dropped from the workspace, or
(3) the episode reaches the timeout of 300 simulation steps.
Detailed coefficients of rewards are summarized in Table VIII.

E. Point cloud sampling process

Our policy takes three types of point-cloud inputs: global
scene cloud, local scene cloud, and object clouds. To obtain
these inputs, we need to sample the points from the underlying
meshes. For the object cloud, we can pre-sample the point
clouds from the underlying mesh, then transform its point
cloud to the current pose. However, obtaining environmental
point clouds is non-trivial: since our scene is constructed dy-
namically, the corresponding point cloud must change across
episodes. Thus, the point clouds cannot be pre-sampled, and
an efficient online sampling procedure is necessary.

To sample the surface point clouds from a union of prim-
itives, we must determine the subsection of the surfaces that
form the exterior of the composed cuboids. While the simplest
solution is to compute the boolean union of environment
meshes, this operation is computationally costly as it cannot
be parallelized. Instead, we subdivide the cuboid surfaces into
a set of non-intersecting triangles, then cull the triangles that
are contained by the cuboids. Afterward, we sample the point
clouds proportional to the area of the remaining non-occluded
triangles. By vectorizing this operation, we can efficiently
sample the environmental point clouds by leveraging GPU-
based acceleration.



TABLE VII: Summary of our MDP, in terms of state, action, and reward components. Each component is denoted by its name,
shorthand symbol, dimensionality and a brief description. †: only used in simulation.

State Component Symbol Dimension Description
Object state† xo

t R15 Object pose and velocity
Robot state xq

t R14 Joint positions and velocities
End-effector pose xEE

t R9 Pose of the robot’s end-effector
Physics parameters† ν R6 Mass, friction, restitution of object and friction of robot and environment

Object geometry Go R512×3 Surface-sampled point cloud of the object
Environment geometry Ge R512×3 Surface-sampled point cloud of the environment

Goal pose Tg R9 Target pose for the object, relative to current pose
Action Component Symbol Dimension Description

Joint-space subgoal residuals ∆q R7 Desired changes in joint positions
Proportional gains kp R7 Joint-space proportional gains
Damping factors ρ R7 Factors for computing damping terms

Reward Component Symbol Dimension Description
Task success reward rs R1 Reward for task success

Goal-reaching reward rr R1 Reward for moving object towards goal
Contact-inducing reward rc R1 Reward for moving gripper towards object

TABLE VIII: Hyperparmeters for the reward terms.

Parameter Value Description

λr 0.15 Goal-reaching reward coefficient
λc 0.03 Contact-inducing reward coefficient
cg 3.0 Scale for goal-reaching distance potential
cr 3.0 Scale for contact-inducing distance potential

Afterward, the local point cloud is sampled by selecting
the points on the global cloud nearest to the object. For
computational efficiency, we pre-sample a set of 64 keypoints
on the object surface via FPS, then sub-sample 512 points
from the global scene cloud with the lowest distance to the
nearest object keypoint in the current pose.

F. Details on Baseline Architectures

UNICORN-SM uses UNICORN as the input representation
(Section III-B), combined with the architecture from Soft
Modularization [94]. The implementation is adapted from the
author’s original code to operate with Isaac Gym [49]. For
a fair comparison, we use the same number of modules and
base network size as in HAMNET. The module activations are
embedded with 128 dimensions, and passed through a two-
layer MLP with a hidden dimension of 128 for each layer of
the base network.

POINTGPT-HAMNET uses HAMNET with the PointGPT-
S [8] representation model, utilizing the code and pre-trained
weights released by the authors. However, since the original
model is memory-intensive and computationally slow, we use
TensorRT [59] to optimize the model.

UNICORN-MONO is a standard MLP using wider hidden
layers (with dimensions [768, 384, 384, 192]) to match the
number of trainable parameters in UNICORN-HAMNET. It
uses Tanh activation and layer normalization in the hidden
layers. When computing its input, we apply the same cross-
attention as in HAMNET to the geometric embeddings, then
concatenate the resulting embeddings with all non-geometric
state inputs before feeding them into the network.

UNICORN-HYPER uses a hypernetwork [31] to output
the parameters of the base network. As directly predicting
all parameters requires an impossibly large hypernetwork,
we instead design UNICORN-HYPER to predict low-rank
decompositions of base network parameters. For each layer of
the base network of form xi = σ(Wxi−1+b) where i denotes
layer index, the hypernetwork ϕ outputs ϕ(z) = {Wl,Wr, b}
and constructs W = WlWr where W ∈ RN×M , Wl ∈ RN×k,
and Wr ∈ Rk×M , where k denotes the rank, thus reducing the
output dimensions from N×M+M to (N+M)×k+M . In
all our experiments, we configure the rank to be 16, and the
hypernetwork is an MLP with hidden dimensions [256, 256]
using Tanh activation and LayerNorm in the interim layers.

UNICORN-TRANSFORMER is a four-layer transformer,
where each layer uses the embedding dimension of 512
and four attention heads. For computational efficiency, we
leverage FlashAttention [16] in our implementation. The trans-
former receives learnable action and value tokens, geometric
embeddings (generated by the same cross-attention used in
HAMNET), and non-geometric state inputs tokenized with a
linear layer. After passing these tokens through the transformer
layers, a two-layer MLP with a 256-dimensional hidden layer
maps the action and value token embeddings to the robot’s
action and state value, respectively. Detailed hyperparameters
for the network architectures and PPO training are described
in Table IX and Table X, respectively.

G. Ablation studies

1) Effects of the gating mechanism: To assess the ben-
efits of the gating mechanism in HAMNET, we compare
with UNICORN-HAMNET-WITHOUT-GATE, which omits
the gating mechanism but is otherwise identical to UNICORN-
HAMNET. Figure 19 illustrates the training progression for
both. While initial trends are similar, UNICORN-HAMNET-
WITHOUT-GATE trains slower and reaches lower final per-
formance than UNICORN-HAMNET (71.6% vs. 75.6%).
This result highlights the effectiveness of complementing



TABLE IX: Network Hyperparameters.

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Num. points 512 Num. encoder layers 4 Modulation
Network MLP (256, 256)

Num. patches 16 Num. self-attn heads 4 Actor MLP (256, 128, 128, 64)
Patch size 32 Cross-attn embedding dim. 64 Critic MLP (256, 128, 128, 64)

Embedding dim. 128 Num. cross-attn heads
(object / others) 8/4 Num. modules 8

TABLE X: PPO Hyperparameters.

Hyperparameter Value Hyperparameter Value
Max Num. epoch 8 Base learning rate 0.0003

Early-stopping KL target 0.024 Adaptive-LR KL target 0.016
Entropy regularization 0 Learning rate schedule KL-adaptive

Initial log std. -0.4 log std. decay factor -0.000367
Policy loss coeff. 2 Value loss coeff. 0.5
GAE parameter 0.95 Num. environment 1024
Discount factor 0.99 Episode length 300
PPO clip range 0.3 Update frequency 8

Bound loss coeff. 0.02 Energy loss coeff. 8e-5

0.0 0.5 1.0 1.5 2.0
# Interactions 1e9

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

UNICORN-HAMNET (OURS)
ENVCODE-HAMNET
UNICORN-HAMNET-WITHOUT-GATE

Fig. 19: Training progression for our ablation. Plots show the
mean (solid) and standard deviations (transparent) for each
baseline across three seeds. The interaction steps are reported
as the total number of steps aggregated across 1024 parallel
environments.

the modules with the gating mechanism to afford additional
expressivity.

2) Representational quality of UNICORN : To evaluate
whether UNICORN sufficiently encodes geometric informa-
tion about the environment and the object, we compare
UNICORN-HAMNET with ENVCODE-HAMNET. This base-
line uses the same architecture as UNICORN-HAMNET, but
employs a hand-engineered oracle representation, ENVCODE.
This is constructed by concatenating the procedural generation
parameters as in Table XI, yielding a unique 25-dimensional
real-valued vector for the scene representation.

As illustrated in Figure 19, UNICORN-HAMNET performs
on par with ENVCODE-HAMNET, achieving a success rate of
75.6% compared to 76.0%. This indicates that UNICORN, de-
spite operating from sensory observations, provides sufficient
information about the environment, matching the performance
of the hand-engineered oracle representation taken directly
from the parameters of the underlying procedural generation

TABLE XI: Content of ENVCODE.

Parameter Dimensions Description

ramp position R2×2 Position of each ramp
ramp slope R2×2 Angle of each ramp

plate elevations R2×3 Height of each base plate
wall heights R4 Height of each wall

ceiling height R1 Height of the ceiling
scene dimension R3 Overall scene dimension
scene position R3 Overall scene position

pipeline.
3) Details on the Parameter Scaling Experiment: In our

parameter scaling experiment (see Figure 4), we consider
three baselines: HAMNET, MLP, and TRANSFORMER. In
HAMNET, we omit the gating to isolate the effects of the
modules. This ensures that MLP and HAMNET reduce to the
same network architecture when the number of module is one,
so that both baselines share the starting point. As we increase
the number of modules, we keep the size of the base network
the same in HAMNET, while increasing the width of the
hidden layers in the MLP baseline to approximately match the
parameter counts, as shown in Table XII. The TRANSFORMER
model is considerably larger, with 8 transformer layers, each
with the embedding dimension of 512 and 4 heads. All results
are aggregated across three different seeds.

TABLE XII: MLP baseline configurations scaled to match the
parameter count of the HAMNET network for each module
count. Network size denotes the dimensions of hidden layers.

Corresponding
Num. modules Network size Num. params

1 [256, 128, 128, 64] 0.36 M
2 [304, 144, 144, 64] 0.43 M
4 [512, 256, 256, 128] 0.94 M
8 [768, 384, 384, 192] 1.76 M

4) Details on the Simulation Benchmark: In our bench-
mark, we provide nine digital twins of real-world environments
paired with a total of 353 objects in our benchmark, shown in
Figure 21: nine custom-scanned objects from the real world
(red box), 21 from GSO [21] (green box), and 323 from
DGN [89] (blue box).

For the custom-scanned objects, stable poses are collected
in the real world using FoundationPose [91]. For the GSO ob-
jects, we use Trimesh [18] to sample their stable orientations.



CabinetTable Basket Circular binSuticase Top of shelf SinkDrawer Grill

Fig. 20: Example configurations for each domain. Each row depicts a different object, and each column shows a different
environment.

Fig. 21: Object meshes used for the benchmark (353 in total).
The red box indicates nine custom-scanned objects from the
real world; the green box contains 21 objects from GSO; and
the blue boxes enclose 323 objects from DGN.

For DGN objects, we use the precomputed stable orientations
(see Appendix B2). To determine stable placements for GSO
and DGN objects, each object is rotated to one of the pre-
sampled stable orientations and randomly placed in a prede-
fined region of the environment with a small vertical margin
(0.005m). We resolve remaining collisions with FCL [63] to
ensure that the object does not penetrate the environment.

From these stable poses, we randomly select pairs of initial
and target object poses that maintain sufficient separation in
both position and orientation to prevent trivial scenarios. For
each domain-object pair, we sample 128 distinct episodes,
each with different collision-free robot initializations within
the robot’s joint limits, as shown in Figure 20.

To support the evaluation of new algorithms, we es-
tablish baseline results from representative monolithic and

modular architectures: UNICORN-MONO and UNICORN-
HAMNET, which are illustrated in Figure 22.

Suitcase Grill Drawer Cabinet Basket Table Top of shelf Circular bin Sink
Domain

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s r
at

e

UNICORN-HAMNET
UNICORN-MONO

Fig. 22: Comparison of success rates of UNICORN-HAMNET
(blue) and UNICORN-MONO (orange) on our simulated
benchmark over 10000 simulation steps.

H. Details on the Real-World Setup

In our real-world experiments, we use four table-mounted
RealSense D435 cameras to observe the point clouds from
multiple viewpoints, ensuring sufficient visibility of the object
during execution (see Figure 12a). To distinguish the object
cloud from the environment cloud, we use SAM [40] to
designate the initial object segmentation mask and utilize
Cutie [10] to track the object during manipulation. We use
FoundationPose [91] to estimate the object’s relative pose
from the goal pose, using the view with the best visibility
of the object (largest object segmentation mask) among the
four cameras. We generate the environment point cloud by
combining and filtering the point clouds from the depth
cameras.



1) Pose tracker implementation : While the original Foun-
dationPose [91] model only processes one image at a time,
we operate with four cameras. To streamline computation, we
batchify the model to allow multiple images to be processed
at once. For additional robustness, we also generate multiple
pose candidates by adding a small noise (0.02m, 0.15 radians).
Each candidate undergoes the refinement procedure as in the
original model, then we select the pose with the highest
prediction score as input to the policy.

2) Failure Modes in the Real World: We describe our five
main failure modes in the real world. In torque-limit violation,
the robot aborts due to the robot exceeding the hardware’s
safety limits. Despite the measures taken in Appendix C, the
sim-to-real gap may still lead to spurious contact in domains
with walls, such as the drawer, when the robot makes rapid
movements to adjust contact sites. The policy may also get
stuck in a deadlock, where it indefinitely repeats ineffective
maneuvers. For instance, the policy may keep attempting a
toppling maneuver for low-friction objects such as heart-box,
which may not work due to slippage. In other cases, the robot
may accidentally drop the object. For example, the object such
as the angled cup may rapidly bounce or roll off the scene,
and the limited dexterity of our hardware prevents catching
such fast-moving objects. Another failure mode arises when
the agent fails to circumnavigate obstructions, getting stuck
against the environment. This also arises from the sim-to-real
gap: while the simulation often allows the robot to move across
a shallow barrier by pressing against it, real-world walls cannot
be penetrated, which causes the robot to get stuck against
the environment. Lastly, the remaining failures occur from
the perception stack, where it loses track of the segmentation
mask or the object pose. This most frequently occurs when
key recognizable textures of the object are occluded by the
robot or the environment.


	Introduction
	Related Work
	Nonprehensile Manipulation
	Planning-based approaches
	Learning-based approaches

	Multi-task Neural Architectures 
	Representation learning on point clouds 
	Modularity in biological networks

	Methodology
	HAMnet-based architecture 
	 Training UniCORN 
	Pre-training data generation 
	Network Architecture 

	Procedural domain and curriculum generation

	Experimental Results
	Overview
	Simulation experiment
	Real world experiment
	Emergence of skills in HAMnet
	Simulated Benchmark in Realistic Domains

	Conclusion
	Limitations

	Appendix
	Details on training UniCORN 
	Contact dataset generation
	Details on pretraining pipeline

	Details on Procedural Domain Generation
	Environment Geometry
	Object Placement

	Simulation-to-Real Transfer Pipeline
	Action Magnitude Curriculum
	Cartesian-space Action Clipping
	Teacher-Student Distillation

	MDP Design
	Point cloud sampling process
	Details on Baseline Architectures
	Ablation studies
	Effects of the gating mechanism
	Representational quality of UniCORN 
	Details on the Parameter Scaling Experiment
	Details on the Simulation Benchmark

	Details on the Real-World Setup
	Pose tracker implementation 
	Failure Modes in the Real World



